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ABSTRACT 

This study investigates the flexural demand in columns in the following contexts: 

the demand on the column splice, the flexural demand distribution (bending moment 

diagram) shape, and the moment distribution at beam-column joints. Incremental 

dynamic analysis (IDA) was carried out for a 15-story special moment frame subjected to 

20 different ground motions. A newly developed demand-chain concept was employed 

together with IDA in assessing the seismic demand on column splices and strong column-

weak beam mechanism, based on inelastic deformation demand on beam-to-column 

joints at three performance levels, the immediate occupancy (IO) level, the life safety (LS) 

level and the collapse prevention (CP) level at 2%, 4% and 6% of story drift ratio (SDR) 

respectively. The demand on column splice was evaluated in terms of peak normalized 

axial ratio, peak flexural ratio, and maximum combined axial and flexural demand-to-

capacity ratio. This investigation concludes, with a combined IDA and demand-chain 

concept, that the flexural demand on the splice can reach as high as the nominal strength 

of the smaller section when the structure is subjected to the design earthquake. This study 

also presents systematically single curvature deformation patterns in the columns in 

contrast to the perfect double curvature (PDC) assumption used in code-based design of 

steel moment frames. Furthermore, this work reveals that plastic hinges may occur in the 

columns near beam-to-column joints when the frame is subjected to the life safety (LS) 

level of earthquake ground motions. This finding presents a challenge to the current 

methodology used in enforcing strong column-weak beam behavior in earthquake-

resistant moment frames.  
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CHAPTER 1. INTRODUCTION 

 Seismic demand of steel moment frames has drawn the attention of researchers, 

mainly after the 1994 Northridge earthquake. The aforementioned incident revealed 

extensive and severe damage at welded moment connections (see Figure 1.1.1) and 

consequently led to in-depth investigations of the beam-to-column connections. 

Following the earthquake hazards, the Federal Emergency Management Agency (FEMA) 

sponsored a detailed investigation on steel moment frames conducted by SAC Steel Joint 

Venture which enlightened the seismic behavior of the moment frames [8]. This 

comprehensive study resulted in a revision of seismic provisions and introduced new 

design concepts. One of the revisions of AISC 341 [2, 3] suggested that the welded column 

splice connections should be formed as complete-joint-penetration (CJP) connections, in 

contrast to pre-Northridge column splices formed as partial-joint-penetration welded 

connections (PJP) as shown in Figures 1.1.2 and 1.1.3. 

Shaw and Kanvinde [10] investigated the feasibility of PJP welded column splices 

used in the special and intermediate moment frame (SMF, IMF), as opposed to CJP welded 

connections suggested by current standards. To evaluate the seismic behavior of the 

connection, several PJP welded column splices were subjected to cyclic loading in their 

study, and the overall response along with the flexural demand of the splices were 

observed. The results suggested that the seismic performance of specimens was sufficient 

and PJP welds utilization in SMF could be efficient and cost-effective compared to CJP 

welds.  

Additional investigation on column splices was conducted by Galasso et al. [9] by 

introducing a probabilistic seismic demand analysis (PSDA) framework to analyze the 

nonlinear dynamic results of 4- and 20-story steel moment frames. Assessment of the 
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demand was succeeded by performing IDA analysis and fragility assessment of selected 

pre-Northridge column splices with Partial-Joint-Penetration (PJP) welds in addition to 

methods of current practice for column splices. The results revealed that pre-Northridge 

welded column splices presented high risk of fracture in contrast to post-Northridge 

connections that displayed lower fracture risk.  

Shen et al. [11] presented the first assessment study on seismic demand on 

column splices by introducing a new demand-chain concept for the first time. The demand 

on columns was calculated in terms of peak axial and flexural demand of the column 

splices in 4-, 9- and 20-story steel moment frames. These structures were subjected to a 

set of 20 ground motions. The excitations were classified into three categories based on 

the seismic response, from moderate damage to collapse prevention level. The outcomes 

indicated that the flexural demand of the splice reached 90% of the nominal capacity of 

the small column when the overall response of the frame was near collapse. Moreover, 

when the frame experienced severe damage, single curvature moment diagrams and 

plastic hinge formation in columns were observed in moderate to high-rise structures. The 

beam-to-column connection was also implemented as plastic hinge rotation (PHR) and 

correlated with the column splice demand. Findings revealed that when the plastic hinge 

rotation was equal to the expected capacity of 0.05 to 0.07 rad, the column splice demand 

appeared to reach the nominal capacity of the small column.  The work presented in Shen 

et al. [11] has been used as a major reference in the seismic design code since its 

publication. Shen et al. divided 20 ground motions into three performance levels in their 

evaluations, successfully leading to developing the new demand-chain concept. However, 

each performance level was represented by a limited number of ground motion 

intensities. Further research in empowering the new demand-chain concept is to combine 
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it with incremental dynamic analysis (IDA) from deterministic evaluation to the combined 

deterministic and probabilistic assessment.  The IDA is capable of introducing ever-

increasing ground motion intensities, but has not been able to provide structure-specific 

evaluations.  

Further research on the influence of various span lengths in column splice demand 

was conducted by Akbas et al. [5]. Various steel moment frames were utilized for the 

assessment with building configurations similar to the one used by Shen et al. [11]. The 

nonlinear analyses revealed that the seismic demand on column splices is influenced by 

the span length, while the overall response of the frame was not significantly affected. 

Additionally, increased demand was observed in frames with unequal span dimensions.  

The aforementioned studies provided information to better understand the 

behavior and mechanisms of column splices in steel moment frames when subjected to 

seismic loads. However, IDA has not been implemented for a thorough investigation on 

the flexural demand, the bending moment diagram shape, and the moment distribution 

of joints. The progressive seismic response of a structure derived from dynamic pushover 

analysis could provide a comprehensive understanding of demand on column splices at 

several performance levels. IDA utilization for demand assessment offers the ability to 

establish correlations between the overall response of the structure and the intensifying 

flexural demand on column splices. The outcomes of previous studies indicate that the 

demand on column splices approaches the nominal capacity when beam-to-column 

connections reach the maximum rotation. Therefore the strong-column-weak beam 

(SCWB) requirement should be taken into consideration when interpreting the results.  

This thesis presents a comprehensive evaluation of the flexural demand on column 

splices with the implementation of IDA to assess the overall response of a steel special 
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moment frame at three performance levels. The parameter employed for the IDA plot 

was the story drift ratio (SDR) in order to assess the overall response of the frame. First 

performance level was defined as immediate occupancy (IO) at 2% of SDR where the 

structure sustained minor damage to nonstructural and structural members, followed by 

the life safety (LS) level at which structural and nonstructural elements are expected to 

experience extended damage defined at 4% of SDR. Life safety is the expected 

performance level when the frame is subjected to the design earthquake, at which the 

behavior of the structure is not elastic and plastic hinge formation in structural members 

is initiated. The last performance level was specified as the collapse prevention (CP) level 

when the structure undergoes 6% of SDR and structural members are expected to sustain 

severe damage in addition to failure of nonstructural elements.  

The objective of this study is to investigate the seismic demand on the column 

splices and establish the interrelation between the plastic hinge formation and the 

bending moment diagrams as the intensity of the ground motion is gradually increasing. 

Furthermore, the flexural demand on the columns and the design SCWB ratio will be 

evaluated to check the conservatism of current standards and the efficiency of the ratio 

in seismic behavior of steel moment frames.  In addition, this study has demonstrated 

how the demand-chain concept and IDA can be combined successfully for the combined 

deterministic and probabilistic seismic performance evaluation.  



www.manaraa.com

5 
 

 

Figure 1.1.1. Failures of moment connections (1994 Northridge) 

 

 

Figure 1.1.2. Pre-Northridge (left) and Post-Northridge column splice (right) 

 

 

Figure 1.1.3. Post-Northridge welded column splice  
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CHAPTER 2. ANALYTICAL MODEL 

2.1 Design of the 15-story special moment frame 

For the purpose of this study, a 15-story Special Moment Frame (SMF) was 

designed based on seismic provisions in ANSI/AISC 341-16, ANSI/AISC 358-16 and ASCE 7-

10 [1, 3, 4]. The building plans and elevation of the frame are similar to the one used by 

Shen et al. [11] and are given in Figure 2.1.1 and 2.1.2, respectively.  The 15-story building 

represents moderate to high-rise buildings and it consists of two moment frames in the 

East-West direction and two braced frames in the North –South direction, as shown in 

Figure 2.1.1. The building plan is symmetrical with dimensions of 150 ft x 125 ft.  For this 

study, only the moment frame design will be presented. The moment frame consists of 

five bays spaced at 25 ft and it includes two levels below seismic base with story height of 

12 ft for the two basement levels, 18 ft for the first level and 13 ft for the upper levels. 

The columns below seismic base at B1 and B2 levels are pinned to the ground and 

horizontal displacement is not allowable. The columns on the base of the frame are 

assumed to be pinned at the foundation.  

The 15-story office building was located in downtown Los Angeles, with site class 

D, SS of 200%g and S1 of 100%g. The frame was designed with dead loads of 96 psf and 83 

psf at floor and roof levels, respectively, in addition to live loads of 50 psf and 20 psf at 

floor and roof levels, respectively. The response modification factor (R) based on ASCE7-

10 [4] was 8 for special moment frame, the overstrength factor (Ω0) was equal to 3 and total 

base shear on the moment frame based on the seismic design parameters was 

approximately 1723 kips and it was distributed along the height of the building with 

proportion to the height and weight of each story level considering the first fundamental 

mode of the frame. The approximate period of the building according to design 
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parameters is 1.941 seconds. Column splices are located at the 2nd, 5th, 8th, 11th and 14th 

level of the frame while for the location of the splice on the column, this study will use  

the Primary Case from Shen et al. [11], for which the column splice location is 4ft above 

the floor elevation. The  floor system of the building consists of beams which also provide 

lateral support to the girders, and a concrete slab with a thickness of 4 inches. The 

composite floor system of the building is to be rigid and serves as a diaphragm, which 

sustains and transfers loads in the vertical plane in addition to resisting lateral loads in the 

horizontal plane. 

The frame was designed based on four requirements; the story drift limit, the 

column strength, the beam strength, and the strong column-weak beam (SCWB) 

requirement. As expected, the design was controlled by the drift limit as it was intended 

that the frame should be close to the story drift limit of 2% for this study. The same design 

goal, if applicable, is common in engineering practice since the members have smaller 

sections hence, the structure is cost effective. Due to the drift-limit-controlled design, the 

demand-over-capacity ratio of column, beams as well as the strong column-weak beam 

ratio are overdesigned, as shown in Tables 2.1.2, 2.1.5, 2.1.6 and 2.1.7. The final members 

are included in Table 2.1.1, and the design story drift limit corresponding to the final 

sections are displayed in Figure 2.1.3. All the members are wide-flange sections with a 

minimum yield strength of 50 ksi. The frame was subjected to the equivalent lateral loads 

in SAP2000, as they were estimated from the seismic parameters, and the story drift limit 

was calculated. The equation for the story drift ratio and the limit was  

1

*  /  

–          0.02  *  

x xe d e

x x x a sx

C I

h

 

  



    
 

where the deflection amplification factor Cd was equal to 5.5 based on ASCE 7-10 and 



www.manaraa.com

8 
 

the importance factor Ie equal to 1.0 since the structure is an office building, while the 

story relative displacement δxe was obtained from the analysis.  

 

Figure 2.1.1. Building Plan 

 

 

Figure 2.1.2. Moment frame on Line A 

 

Design Earthquake 

Braced Frame 

Moment Frame 

Moment Frame 
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   Figure 2.1.3. Story drift ratio of final 

members 

 

 

After the drift limit was met, the column strength was checked in terms of the 

demand over capacity ratio. The columns of the moment frame were treated as sections 

under combined flexure and axial force. The required strength included the response from 

both gravity loads and the lateral forces that were calculated in the first analysis according 

to AISC to design the column with adequate strength and prevent a possible failure.   The 

equations used in the design procedure were:  

2

1 2

   *  

  *    *  

Pr Pnt B Plt

Mr B Mnt B Mlt

 

 
 

 

 

   0.2 :         1.0              . 6 1

   0.2 :   0.5       1.0     . 6 2

When pPr pPr bMr Eq

When pPr pPr bMr Eq

   

   
 

Table 2.1.2 illustrates the check for the first story interior and exterior column of the 

moment frame. As can be observed the columns are overdesigned. 

Table 2.1.1. Sections of 15-story SMF 

Story 
Exterior 
Column 

Interior 
Column 

Girder 

15 W14X145 W14X176 W24X76 

14 W14X145 W14X176 W24X76 

13 W14X159 W14x398 W24x162 

12 W14X159 W14x398 W24x162 
11 W14X159 W14x398 W24x162 

10 W14x370 W14x455 W27x194 

9 W14x370 W14x455 W27x194 

8 W14x370 W14x455 W27x194 

7 W14x426 W14x500 W27x235 

6 W14x426 W14x500 W27x235 

5 W14x426 W14x500 W27x235 

4 W14x500 W14x550 W27x235 

3 W14x500 W14x550 W27x235 

2 W14x500 W14x550 W27x235 

1 W14x550 W14x605 W27x258 

B1 W14x550 W14x605 W27x258 

B2 W14x550 W14x605 W27x258 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.00 1.00 2.00 3.00
St

o
ry

 L
e

ve
l

Design SDR %
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Table 2.1.2. Column Strength 
 Exterior Col 1st floor Interior Col 1st floor 

Section W14x550 W14x605 

B1 / B2 1.0 / 1.148 1.0 / 1.148 

Pnt [kips] 502.61 871.83 

Plt [kips] 880.87 136.80 

Pr [kips] 1513.85 1028.88 

Mnt [k-ft] 27.35 - 

Mlt [k-ft] 1151.08 1368.39 

Mr [k-ft] 1348.79 1570.91 

Ky 1.0 1.0 

Lb [ft] 18 18 

p x103 [k]-1 0.162 0.147 

b x103 [k-ft]-1 0.202 0.180 

pPr 0.245 0.151 

Eq. 6-1/6-2 0.517 0.394 

 

Preceding the beam design was the reduced beam section (RBS) design. The beam-

to-column connections of the moment frame were important to be designed with 

adequate strength for seismic design, if the expected lateral forces are greater than the 

capacity of the connection, unexpected failure can occur. For this study, all the beam-to-

column connections were designed as the RBS moment connection according to the 

prequalified connections in special moment frames according to AISC 358-10, where the 

section of the beam is reduced by trimming the flange in selected regions away from the 

beam-column interface in order to control the location of yielding and plastic hinge 

formation. The beam flange is connected to column flange using complete-joint-

penetration (CJP) groove welds as Figure 2.1.4 displays. The beam depth is limited to W36 

and the beam weight limit is set to 302 lb/ft in addition to the beam flange thickness limit 

of 1 ¾ in. There are no limitations for the column depth or weight per foot. The design of 

the RBS connection was an iterative procedure where the dimensions a, b and c shown in 

Figure 2.1.4, were estimated so that the factored plastic moment of the beam is lower 

than the demand. The dimensions should meet the limits as defined in AISC 358-16. For 
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the calculation of the beam strength, the reduced beam section properties were utilized 

such as the plastic section modulus at the center of RBS (ZRBS). Tables 2.1.4 and 2.1.5 show 

the design values for the final sections as they were defined in the design process. All the 

sections satisfy the flexural strength and the designed reduced beam dimensions are also 

given in the table. Following, the beam strength requirement was checked for the selected 

sections as they were defined in the drift limit requirement. All the beams and columns 

were designed as highly ductile members as specified in AISC 341-16 for special moment 

frame (SMF). Table 2.1.3 summarize a strength check of the first story level beam for 

demonstration. The demand is estimated using the same formula utilized in column 

strength requirement where the B2 multiplier accounts for the P-Δ effects and is 

calculated based on the dead and lateral loads of each story level. It is noted that the 

beam demand over capacity ratio is less than 0.5, the section is overdesigned as column 

sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.4. Reduced beam section connection and limits 

 

Table 2.1.3. Beam Strength 
Story - Section 1st – W27x258 

φ 0.9 

Zx [in3] 852 

Fy [ksi] 50 

Mn [k-ft] 3550 

Mnt [k-ft] 35.73 

Mlt [k-ft] 1135.83 

B1 1.00 

B2 1.148 

φMn [k-ft] 3195.00 

Mu [k-ft] 1339.66 

Mr/Mc 0.419 
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Table 2.1.4. RBS Design Exterior Span Beam     

Section 
dbf 
(in) 

tbf 
(in) 

bbf 
(in) 

Zx 
(in3) 

a 
(in) 

b 

(in) 
c 

(in) 
ZRBS 

(in3) 
Cpr 

Mpr 
(k-ft) 

Sh 
(in) 

Lh 
(ft) 

VRBS 
(kip) 

Mf 
(k-ft) 

φd*Mpe 
(k-ft) 

Mf / 
φdMpe 

W24X76 23.90 0.68 8.99 200.00 6.20 17.90 1.45 154.21 1.15 812.82 15.15 26.23 67.97 898.63 916.67 0.98 

W24X76 23.90 0.68 8.99 200.00 6.20 17.90 1.45 154.21 1.15 812.82 15.15 26.23 69.64 900.74 916.67 0.98 

W24x162 25.00 1.22 13.00 468.00 9.00 18.75 2.30 334.55 1.15 1763.34 18.38 25.55 145.49 1986.12 2145.00 0.93 

W24x162 25.00 1.22 13.00 468.00 9.00 18.75 2.30 334.55 1.15 1763.34 18.38 25.55 145.49 1986.12 2145.00 0.93 

W24x162 25.00 1.22 13.00 468.00 9.00 18.75 2.30 334.55 1.15 1763.34 18.38 25.55 145.49 1986.12 2145.00 0.93 

W27x194 28.10 1.34 14.00 631.00 9.00 21.10 2.30 466.05 1.15 2456.48 19.55 25.20 202.29 2786.04 2892.08 0.96 

W27x194 28.10 1.34 14.00 631.00 9.00 21.10 2.30 466.05 1.15 2456.48 19.55 25.20 202.29 2786.04 2892.08 0.96 

W27x194 28.10 1.34 14.00 631.00 9.00 21.10 2.30 466.05 1.15 2456.48 19.55 25.20 202.29 2786.04 2892.08 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 25.02 244.36 3379.00 3538.33 0.95 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 25.02 244.36 3379.00 3538.33 0.95 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 25.02 244.36 3379.00 3538.33 0.95 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.96 244.93 3379.97 3538.33 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.96 244.93 3379.97 3538.33 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.96 244.93 3379.97 3538.33 0.96 

W27x258 29.00 1.77 14.30 852.00 9.65 21.75 2.50 610.77 1.15 3219.29 20.53 24.87 266.19 3674.63 3905.00 0.94 

W27x258 29.00 1.77 14.30 852.00 9.65 21.75 2.50 610.77 1.15 3219.29 20.53 24.87 266.19 3674.63 3905.00 0.94 

W27x258 29.00 1.77 14.30 852.00 9.65 21.75 2.50 610.77 1.15 3219.29 20.53 24.87 266.19 3674.63 3905.00 0.94 

1
1
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Table 2.1.5. RBS Design Interior Span Beam     

Section 
dbf 
(in) 

tbf 
(in) 

bbf 
(in) 

Zx  
(in3) 

a 
(in) 

b 

(in) 
c 

(in) 
ZRBS 

(in3) 
Cpr 

Mpr 
(k-ft) 

Sh 
(in) 

Lh 
(ft) 

VRBS 
(kip) 

Mf 
(k-ft) 

φd*Mpe 
(k-ft) 

Mf / 
φdMpe 

W24X76 23.90 0.68 8.99 200.00 6.20 17.90 1.45 154.21 1.15 812.82 15.15 26.21 68.01 898.68 916.67 0.98 

W24X76 23.90 0.68 8.99 200.00 6.20 17.90 1.45 154.21 1.15 812.82 15.15 26.21 69.68 900.79 916.67 0.98 

W24x162 25.00 1.22 13.00 468.00 9.00 18.75 2.30 334.55 1.15 1763.34 18.38 25.41 146.20 1987.20 2145.00 0.93 

W24x162 25.00 1.22 13.00 468.00 9.00 18.75 2.30 334.55 1.15 1763.34 18.38 25.41 146.20 1987.20 2145.00 0.93 

W24x162 25.00 1.22 13.00 468.00 9.00 18.75 2.30 334.55 1.15 1763.34 18.38 25.41 146.20 1987.20 2145.00 0.93 

W27x194 28.10 1.34 14.00 631.00 9.00 21.10 2.30 466.05 1.15 2456.48 19.55 25.16 202.63 2786.59 2892.08 0.96 

W27x194 28.10 1.34 14.00 631.00 9.00 21.10 2.30 466.05 1.15 2456.48 19.55 25.16 202.63 2786.59 2892.08 0.96 

W27x194 28.10 1.34 14.00 631.00 9.00 21.10 2.30 466.05 1.15 2456.48 19.55 25.16 202.63 2786.59 2892.08 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.98 244.70 3379.58 3538.33 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.98 244.70 3379.58 3538.33 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.98 244.70 3379.58 3538.33 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.93 245.16 3380.36 3538.33 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.93 245.16 3380.36 3538.33 0.96 

W27x235 28.70 1.61 14.20 772.00 9.50 21.60 2.40 562.65 1.15 2965.63 20.30 24.93 245.16 3380.36 3538.33 0.96 

W27x258 29.00 1.77 14.30 852.00 9.65 21.75 2.50 610.77 1.15 3219.29 20.53 24.84 266.48 3675.14 3905.00 0.94 

W27x258 29.00 1.77 14.30 852.00 9.65 21.75 2.50 610.77 1.15 3219.29 20.53 24.84 266.48 3675.14 3905.00 0.94 

W27x258 29.00 1.77 14.30 852.00 9.65 21.75 2.50 610.77 1.15 3219.29 20.53 24.84 266.48 3675.14 3905.00 0.94 

1
2 
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Subsequently, in the design process the strong column-weak beam (SCWB) requirement 

was to be satisfied. As defined in AISC 341-16 [3], the moment ratio at all joints of the 

structure should be greater than 1.0.  The flexural strength of the beam is defined as the 

moment at the location of the reduced beam section (RBS) to comply with the 

prequalified connections [1] based on AISC 341-16 [3] 

*
1.0

*

pc

pb





 

where   

ΣM*pc = the sum of the nominal flexural strengths of the columns above and below the 

joint to the beam centerline with a reduction for the axial force in the column. 

 *   –   /pc c yc uc gM Z F P A 
 

ΣM*pb = the sum of the expected flexural strengths of the beams at the plastic hinge 

locations to the column centerline.   

 * 1.1  pb y yb RBS uvM R F Z M  
 

When ensured that the column is stronger than the girder, the failure mechanism of the 

frame was defined. The intentional yielding and plastic hinge formation in the beams was 

desirable so that the column yielding takes longer and protects the structure from 

possible column failure. A summary of the SCWB requirement is displayed in Tables 2.1.6 

and 2.1.7. 
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Table 2.1.6. Strong column-weak beam check at exterior joints 

Joint 
level 

Column Beam 
ΣMpc 

ΣMpb 
Top Bottom 

ΣMpc ΣMpb 
Section Zc (in3) Ag (in2) Mpc,top Section Zc (in3) Ag (in2) Mpc,bot 

15 - 0 0 0 W14X145 260.0 42.7 1083.33 1083.33 905.21 1.20 

14 W14X145 260.0 42.7 1083.33 W14X145 260.0 42.7 1083.33 2166.67 908.35 2.39 

13 W14X145 260.0 42.7 1083.33 W14X159 287.0 46.7 1195.83 2279.17 2000.39 1.14 

12 W14X159 287.0 46.7 1195.83 W14X159 287.0 46.7 1195.83 2391.67 2000.39 1.20 

11 W14X159 287.0 46.7 1195.83 W14X159 287.0 46.7 1195.83 2391.67 2000.39 1.20 

10 W14X159 287.0 46.7 1195.83 W14x370 736.0 109.0 3066.67 4262.50 2830.10 1.51 

9 W14x370 736.0 109.0 3066.67 W14x370 736.0 109.0 3066.67 6133.33 2830.10 2.17 

8 W14x370 736.0 109.0 3066.67 W14x370 736.0 109.0 3066.67 6133.33 2830.10 2.17 

7 W14x370 736.0 109.0 3066.67 W14x426 869.0 125.0 3620.83 6687.50 3440.45 1.94 

6 W14x426 869.0 125.0 3620.83 W14x426 869.0 125.0 3620.83 7241.67 3440.45 2.10 

5 W14x426 869.0 125.0 3620.83 W14x426 869.0 125.0 3620.83 7241.67 3440.45 2.10 

4 W14x426 869.0 125.0 3620.83 W14x500 1050.0 147.0 4375.00 7995.83 3451.06 2.32 

3 W14x500 1050.0 147.0 4375.00 W14x500 1050.0 147.0 4375.00 8750.00 3451.06 2.54 

2 W14x500 1050.0 147.0 4375.00 W14x500 1050.0 147.0 4375.00 8750.00 3451.06 2.54 

1 W14x500 1050.0 147.0 4375.00 W14x550 1180.0 162.0 4916.67 9291.67 3758.71 2.47 

B1 W14x550 1180.0 162.0 4916.67 W14x550 1180.0 162.0 4916.67 9833.33 3758.71 2.62 

B2 W14x550 1180.0 162.0 4916.67 W14x550 1180.0 162.0 4916.67 9833.33 3758.71 2.62 

1
5
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Table 2.1.7. Strong column-weak beam check at interior joints 

Joint 
level 

Column Beam 
ΣMpc 

ΣMpb 
Top Bottom 

ΣMpc ΣMpb 
Section Zc (in3) Ag (in2) Mpc,top Section  Zc (in3) Ag (in2) Mpc,bot 

15 - 0 0 0 W14X176 320 51.8 1333.33 1333.33 1812.82 0.74 

14 W14X176 320 51.8 1333.33 W14X176 320 51.8 1333.33 2666.67 1819.15 1.47 

13 W14X176 320 51.8 1333.33 W14x398 801 117.0 3338 4670.83 4044.02 1.15 

12 W14x398 801 117.0 3338 W14x398 801 117.0 3338 6675.00 4044.02 1.65 

11 W14x398 801 117.0 3338 W14x398 801 117.0 3338 6675.00 4044.02 1.65 

10 W14x398 801 117.0 3338 W14x455 936 134.0 3900 7237.50 5680.40 1.27 

9 W14x455 936 134.0 3900 W14x455 936 134.0 3900 7800.00 5680.40 1.37 

8 W14x455 936 134.0 3900 W14x455 936 134.0 3900 7800.00 5680.40 1.37 

7 W14x455 936 134.0 3900 W14x500 1050 147.0 4375 8275.00 6900.96 1.20 

6 W14x500 1050 147.0 4375 W14x500 1050 147.0 4375 8750.00 6900.96 1.27 

5 W14x500 1050 147.0 4375 W14x500 1050 147.0 4375 8750.00 6900.96 1.27 

4 W14x500 1050 147.0 4375 W14x550 1180 162.0 4916.67 9291.67 6915.54 1.34 

3 W14x550 1180 162.0 4916.67 W14x550 1180 162.0 4916.67 9833.33 6915.54 1.42 

2 W14x550 1180 162.0 4916.67 W14x550 1180 162.0 4916.67 9833.33 6915.54 1.42 

1 W14x550 1180 162.0 4916.67 W14x605 1320 178.0 5500.00 10416.67 7534.47 1.38 

B1 W14x605 1320 178.0 5500.00 W14x605 1320 178.0 5500.00 11000.00 7534.47 1.46 

B2 W14x605 1320 178.0 5500.00 W14x605 1320 178.0 5500.00 11000.00 7534.47 1.46 

1
6
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Furthermore, the panel zone thickness was checked according to current specifications so 

that if the column web thickness does not satisfy the requirement, doubler plates should 

be added to the column to ensure the rigid zone has adequate stiffness. For this study, as 

shown in Tables 2.1.8 and 2.1.9, no doubler plates were needed for the selected sections. 

The panel zone was determined by AISC 341-16 [3] with the dimensions illustrated in 

Figure 2.1.5 : 

  / 90z zt d w 
 

where  

dz = d-2tf of the deeper beam at the connection (in) 

t = thickness of column web or doubler plate (in) 

 wz = width of the panel zone between column flanges (in)   

 

                                                                                                              

 

 

 

 

 

 

 

        Figure 2.1.5. Panel zone 
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Table 2.1.9. Panel Zone Checks of Interior Joints  
Interior Column Beam 

 

Joint Section dc 
(in) 

tcf 
(in) 

Section db 
(in) 

tbf 
(in) 

(dz+wz)/90 
(in) 

tcw 

(in) 
Doubler 

Plate 

15 W14X193 15,5 1,440 W21X55 21,0 0,615 0,360 0,89 No 

14 W14X193 15,5 1,440 W21X55 21,0 0,615 0,360 0,89 No 

13 W14x398 18,3 2,850 W24x162 25,0 1,220 0,391 1,77 No 

12 W14x398 18,3 2,850 W24x162 25,0 1,220 0,391 1,77 No 

11 W14x398 18,3 2,850 W24x162 25,0 1,220 0,391 1,77 No 

10 W14x455 19,0 3,210 W27x194 28,1 1,340 0,422 2,02 No 

9 W14x455 19,0 3,210 W27x194 28,1 1,340 0,422 1,66 No 

8 W14x455 19,0 3,210 W27x194 28,1 1,340 0,422 1,66 No 

7 W14x500 19,6 3,500 W27x235 28,7 1,610 0,423 2,19 No 

6 W14x500 19,6 3,500 W27x235 28,7 1,610 0,423 2,19 No 

5 W14x500 19,6 3,500 W27x235 28,7 1,610 0,423 2,19 No 

4 W14x550 20,2 3,820 W27x235 28,7 1,610 0,423 2,38 No 

3 W14x550 20,2 3,820 W27x235 28,7 1,610 0,423 2,38 No 

2 W14x550 20,2 3,820 W27x235 28,7 1,610 0,423 2,38 No 

1 W14x550 20,2 3,820 W27x258 29,0 1,770 0,422 2,38 No 

B1 W14x550 20,2 3,820 W27x258 29,0 1,770 0,422 2,38 No 

B2 W14x550 20,2 3,820 W27x258 29,0 1,770 0,422 2,38 No 

 

Table 2.1.8. Panel Zone Checks of Exterior Joints  
Exterior Column Beam 

 

Joint Section dc 
(in) 

tcf 
(in) 

Section db 
(in) 

tbf 
(in) 

(dz+wz)/90 
(in) 

tcw  
(in) 

Doubler 
Plate 

15 W14X159 15,0 1,190 W21X62 21,0 0,615 0,36 0,75 No 

14 W14X159 15,0 1,190 W21X62 21,0 0,615 0,36 0,75 No 

13 W14X159 15,0 1,190 W24x162 25,0 1,220 0,39 0,75 No 

12 W14X159 15,0 1,190 W24x162 25,0 1,220 0,39 0,75 No 

11 W14X159 15,0 1,190 W24x162 25,0 1,220 0,39 0,75 No 

10 W14x370 17,9 2,66 W27x194 28,1 1,340 0,42 1,66 No 

9 W14x370 17,9 2,66 W27x194 28,1 1,340 0,42 1,66 No 

8 W14x370 17,9 2,66 W27x194 28,1 1,340 0,42 1,66 No 

7 W14x426 18,7 3,04 W27x235 28,7 1,610 0,42 1,88 No 

6 W14x426 18,7 3,04 W27x235 28,7 1,610 0,42 1,88 No 

5 W14x426 18,7 3,04 W27x235 28,7 1,610 0,42 1,88 No 

4 W14x500 19,6 3,50 W27x235 28,7 1,610 0,42 2,19 No 

3 W14x500 19,6 3,50 W27x235 28,7 1,610 0,42 2,19 No 

2 W14x500 19,6 3,50 W27x235 28,7 1,610 0,42 2,19 No 

1 W14x500 19,0 3,50 W27x258 29,0 1,770 0,42 2,19 No 

B1 W14x500 19,0 3,50 W27x258 29,0 1,770 0,42 2,19 No 

B2 W14x500 19,0 3,50 W27x258 29,0 1,770 0,42 2,19 No 
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 2.2 Earthquake ground motions  

The moment frame was designed based on a seismic design concept according to 

which the structure should undergo a ductile response regardless of the type of ground 

excitation. For the purpose of this study, an ensemble of 20 ground motions with 10% 

Probability of Exceedance in 50 years (10%PE) was selected in order to cover a wide range 

of ground motion types.  The 20 ground motion records were selected from PEER Ground 

motion database and they are scaled to be compatible with site class D in Los Angeles 

area, with design spectrum parameters SS=2.0g, S1=1.0g and TL=12.0 sec.  The elastic 

response spectra of the ground motions and the target spectrum are illustrated in Figure 

2.2.1. The selected time histories are composed of 10 events with two components each, 

the fault normal (FN) component and the fault parallel (FP) component. Each component 

was applied separately on the structure for each time-history analysis.  PGA varies from 

0.512g up to 1.566g as shown in Table 3.2.1 with more information on the selected ground 

motions.  Figures 2.2.2 displays the time histories of the 20 ground motions used in this 

study including the original scale factor. Comparison of GM01, GM02, GM17 and GM19 

was conducted in order to demonstrate the variation of the selected excitations used in 

this study. GM02, GM17 and GM19 ground excitations were selected after the first 

analyses, based on the response of the structure, and GM01 was selected for comparison 

between different components of the same event (Northridge, 1994). The correlation of 

these ground excitations was in terms of response spectra, duration and intensity. Figure 

2.2.3 displays the response spectra of the four selected records for clarification. The peak 

ground acceleration of GM01, GM02, GM17 and GM19 is 0.979g, 0.578g, 0.512g and 

1.566g respectively.  
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Table 2.2.1. Ground motions used in this study 

ID No. NGA# Component 
Scale 

Factor 
Event Year Mag 

Duration 

(seconds) 

PGA 

(g) 

PGV 

(in/sec) 

GM01 
1085 

FN 
1.1675 Northridge 1994 6.69 40 

0.979 5.35 

GM02 FP 0.578 3.60 

GM03 
1489 

FN 
2.8835 

Chi-Chi- 

Taiwan 
1999 7.62 90 

0.810 5.08 

GM04 FP 0.718 6.50 

GM05 
1515 

FN 
2.5841 

Chi-Chi- 

Taiwan 
1999 7.62 90 

0.643 5.71 

GM06 FP 0.513 5.02 

GM07 
1009 

FN 
3.8019 Northridge 1994 6.69 55.33 

1.041 4.84 

GM08 FP 0.985 3.68 

GM09 
726 

FN 
6.5733 

Superstition 

Hills 
1987 6.54 21.89 

0.817 2.03 

GM10 FP 1.059 4.61 

GM11 
179 

FN 
1.9573 

Imperial 

Valley 
1979 6.53 39 

0.699 6.00 

GM12 FP 0.929 3.09 

GM13 
802 

FN 
2.3023 Loma Prieta 1989 6.93 39.955 

0.835 5.03 

GM14 FP 0.866 3.92 

GM15 
779 

FN 
1.0816 Loma Prieta 1989 6.93 25.005 

1.021 4.13 

GM16 FP 0.581 3.07 

GM17 
722 

FN 
4.8465 

Superstition 

Hills 
1987 6.54 21.98 

0.512 2.72 

GM18 FP 0.669 6.31 

GM19 
1148 

FN 
7.2093 

Kocaeli- 

Turkey 
1999 7.51 30 

1.566 5.72 

GM20 FP 1.098 10.94 

Note: NGA # - Sequential number in PEER Strong Ground Motion Database 
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Table 2.2.2. Spectral Accelerations Corresponding to Fundamental Period (T1=2.491 sec) 

GMs Sa (T1) GM Scale Factor 

GM01 0.454783 1.1675 

GM02 0.927671 1.1675 

GM03 0.374193 2.8835 

GM04 0.282124 2.8835 

GM05 0.391273 2.5841 

GM06 0.384503 2.5841 

GM07 0.539317 3.8019 

GM08 0.274894 3.8019 

GM09 0.332888 6.5733 

GM10 0.586398 6.5733 

GM11 0.610186 1.9573 

GM12 0.326335 1.9573 

GM13 0.455528 2.3023 

GM14 0.273208 2.3023 

GM15 0.510062 1.0816 

GM16 0.273876 1.0816 

GM17 0.211755 4.8465 

GM18 0.653012 4.8465 

GM19 0.279130 7.2093 

GM20 0.565932 7.2093 

Figure 2.2.1. Response spectra of ground motions
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Figure 2.2.2. Time histories of ground motions 
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Figure 2.2.3. Response spectra of GM01, GM02, GM17 and GM19 

 

Initial comparison of the fault normal (FN) component and the fault parallel (FP) 

component of Northridge 1994 shows that the two recorded ground motions have the same 

intensity pattern, which is a short period of a few seconds during which the peak ground 

acceleration occurs, as shown in Figure 2.2.2. In contrast with the PGA of each component, 

when analyzing the response spectra, it is noted that for structures with shorter first period, 

the fault parallel component has higher values of ground acceleration. Moreover, although 

GM01 has larger value of PGA, it is observed that for the structure of this study with first 

fundamental period of 2.49 seconds, the ground motion with name GM02 has a significant 

drop in the ground acceleration. During the plastic response of the frame where the 

fundamental period of the frame can shift to a longer period, the response of the structure 

will vary under these two ground excitations. The difference in the ground acceleration in 

addition to the significant drop can be interpreted in terms of energy, therefore it can be said 

that the required energy to force the frame to reach 4% of story drift ratio (SDR) for GM01 is 
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greater than the energy required from ground motion GM02. Additional comparison was 

conducted for GM02, GM17 and GM19 with duration of 40 sec, 21.98 sec and 30 sec 

respectively. Although ground motions GM02 and GM17 have approximately similar PGA’s of 

0.578g and 0.512g respectively, when analyzing the recorded time history there is a 

divergence in the pattern of the excitation. Ground motion GM02 has a period of 

approximately 10 seconds of peaks in contrast with GM17, where during the 21.89 seconds 

of the excitation, a pattern of peaks is observed with constant frequency. GM19 follows a 

pattern between GM02 and GM17, it has a period of peaks with constant frequency in 

addition to a 10 second period where the peak ground acceleration occurs. GM19 has higher 

peak ground acceleration (PGA) than the other two ground excitations while the response 

spectrum of this excitation after 1 sec is similar to GM17, however after 3 seconds the ground 

acceleration is increasing in contrast with the spectra of the other ground motions. As it will 

be demonstrated in the following chapters, the response of the structure differs under each 

excitation. 

2.3 Numerical model in SAP2000 

 Succeeding the finalization of the sections with the design process, the analytical 

numerical model was developed. For the numerical model and analyses, SAP2000 was utilized 

in this study. Initially, as it was mentioned in previous sections for the design process the 

moment frame was modeled in order to finalize member sizes, and it was the base for the 

analytical model which included the column splice locations and plastic hinges at the column 

end and at the RBS region. The final numerical model of the 15-story frame is illustrated in 

Figure 2.3.1. The special moment frame was modeled as a 2D frame with all the columns and 

beams modeled as line elements which define the centerline of the section. In order to 

account for P-Δ effects, additional columns were introduced in to the model in order to 
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sustain dead load appertaining to the frame, without any contribution to the overall lateral 

response of the structure, also known as dummy columns. Lumped masses were assumed at 

each story level assigned to one of the interior joints of the level, calculated as shown in Table 

2.3.2. 

The column splice is located 4 ft above the beam-to-column connection (see figure 2.3.2) at 

story levels 2, 5, 8, 11 and 14 with the locations summarized in Table 2.3.1. After expanding 

the sections up to the column splice location in the model, the drift ratio is estimated and 

compared with the design drift ratio, Figure 2.3.3. As expected, the drift ratios in both cases 

are similar, with a small decrease in the ratio after modeling the column splice locations due 

to the increased stiffness. The larger section contributes to the stiffness of that level and was 

not considered in the calculations during the design process, hence the story drift was 

decreased.   

For the nonlinear dynamic time history analyses, plastic hinges were assigned at the RBS 

locations as shown in Table 2.3.3, the relative locations are determined based on the RBS 

dimensions shown in previous sections. Moreover, plastic hinges were also assigned at the 

column end at dc/2 in the numerical model. Figure 2.3.4 illustrates a detail of the panel zone 

and the plastic hinges assigned to the model. The moment-rotation interaction curves of the 

beam plastic hinges account for the nonlinearity of the material by a bilinear plot.  Engelhardt 

et al. [7] conducted a study on RBS connections used in special moment frames by testing 

several specimens of two-sided moment connections under cyclic load as suggested by AISC. 

The evaluation of the moment connection was in terms of story drift angle and ductility, in 

addition to the failure modes of the connection and the dissipated energy. Based on the 

overall response and specifically on specimen 1C with balanced strength of panel zone and 

composite slab, test results showed that the moment connection undergo yielding followed 
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by local buckling until fracture of the flange occurred.  Total story drift angle of 0.05 radians 

was reached and the strength of the connection was decreased to 80% of the capacity 

following the bottom flange fracture. Further investigation on one-sided moment connection 

was conducted by Lee et al. [6] and Yu et al. [13] with test results similar to previous studies. 

The RBS strength after yielding, increases at 1.2 of normalized moment ratio until 4% of SDR. 

Based on previous studies, several moment-rotation (M-θ) curves were investigated to 

achieve the best results based on real test data. Figures 2.3.5 and 2.3.6 display two of the 

cases investigated as a parametric study to define the final moment-rotation relationship for 

the plastic hinges assigned on RBS locations. The first plot was based on previous studies 

although the analyses showed that the negative stiffness after 0.04 radians causes numerical 

problems in SAP2000. Figure 2.3.6 illustrates the final moment-theta interaction modeled for 

the RBS plastic hinges. Appendix B summarizes the parametric study results for the cases 

under investigation at 4% and 6% of SDR including plastic hinge maps and deformed shapes  

of the frame. 

 

Figure 2.3.1. Moment frame model                               Figure 2.3.2. Column splice location 

 

Table 2.3.1. Column Splice location 

Level Beam 
Section 

db 
[in] 

Splice location 
from CL [ft] 

14 W24X76 23.9 5.329 

11 W24x162 25.0 5.375 

8 W27x194 28.1 5.504 

5 W27x235 28.7 5.529 

2 W27x258 29.0 5.542 
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Figure 2.3.3. Design (left) and actual (right) story drift ratio 

 

 

Figure 2.3.4. Plastic hinge and rigid zone assignments 

 

 

 

Table 2.3.2. Lumped mass 
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Mass as weight 
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15 778.125 
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Figure 2.3.5. Initial moment-theta interaction curve 

 

Figure 2.3.6. Final moment-theta interaction curve 

 

Table 2.3.3. Nominal Moment Capacity and Location of RBS for Numerical Model 

Beam 
Section 

Mrbs  
(k-ft) 

Relative Locations 

Exterior Span Interior Span 

Left  Right Left  Right 

W24X76 642.5 0.0752 0.9242 0.0758 0.9242 

W24X76 642.5 0.0752 0.9242 0.0758 0.9242 

W24x162 1393.9 0.0863 0.9083 0.0918 0.9083 

W24x162 1393.9 0.0863 0.9083 0.0918 0.9083 

W24x162 1393.9 0.0863 0.9083 0.0918 0.9083 

W27x194 1941.9 0.0950 0.9032 0.0968 0.9032 

W27x194 1941.9 0.0950 0.9032 0.0968 0.9032 

W27x194 1941.9 0.0950 0.9032 0.0968 0.9032 

W27x235 2344.4 0.0988 0.8997 0.1003 0.8997 

W27x235 2344.4 0.0988 0.8997 0.1003 0.8997 

W27x235 2344.4 0.0988 0.8997 0.1003 0.8997 

W27x235 2344.4 0.1003 0.8987 0.1013 0.8987 

W27x235 2344.4 0.1003 0.8987 0.1013 0.8987 

W27x235 2344.4 0.1003 0.8987 0.1013 0.8987 

W27x258 2544.9 0.1021 0.8967 0.1033 0.8967 

W27x258 2544.9 0.1021 0.8967 0.1033 0.8967 

W27x258 2544.9 0.1021 0.8967 0.1033 0.8967 
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Furthermore, modal analysis was performed on the moment frame to determine the dynamic 

properties of the structure. The response of the frame is directly related to the properties as 

were predefined through the design process and the selected sections. For the purposes of 

the modal analysis, the mass was assumed to be lumped at the level of each story as shown 

in Table 2.3.2 and the damping ratio is taken as 5% for all modes. The fundamental periods of 

the first six modes of the moment frame as well as the modal participating mass ratios were 

determined after the modal analysis as shown in Table 2.3.4. As it is observed, the actual 

period of the structure for the first mode is 2.491 seconds while the estimated period 

corresponding to the first mode defined during the design process was 1.941 seconds. This 

difference in the fundamental period is important since it will define the seismic forces 

attracted to the structure based on the response spectra of the ground excitations. 

 

 

 

 

The structure utilized in this research is a 15-story special moment frame, hence it was 

expected that higher mode shapes and damping would influence the inelastic response of the 

frame.  Therefore, the Rayleigh damping should be taken under careful consideration for the 

numerical model. A parametric study was conducted to investigate the impact of damping 

coefficient on the response of the structure and to identify which mode combination would 

be the most suitable for the analytical model so that the demand assessment was based on a 

model with realistic parameters. The combinations of mode shapes and damping coefficients 

Table 2.3.4. Fundamental periods and modal participating mass ratio 

Mode Period [sec] Modal participating mass ratio 

1 2.491 0.718 

2 0.920 0.100 

3 0.549 0.034 

4 0.388 0.017 

5 0.293 0.010 

6 0.228 0.006 
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are illustrated in Figure 2.3.5. The parametric study was conducted prior the finalization of 

the numerical model and 2% and 5% of damping was taken into considerations as shown and 

linear as well as nonlinear analyses were performed for each case. The analysis indicated that 

the peak displacement of the frame occurred at the combination of first and third mode, in 

both 2% and 5% of damping. Moreover, between the two main cases of damping, maximum 

response occurred at 2% as expected due to the lower energy dissipation. For this thesis, the 

damping was taken as 5% for all modes so that the model includes realistic structure 

parameters. Refer to Appendix A for figures and results from the comparison of mode shapes. 

 

Figure 2.3.5. Cases under investigation for damping coefficient 

2.4 Incremental dynamic analysis 

Researchers studied several methodologies over the years to evaluate seismic 

performance of structures.  Incremental dynamic analysis (IDA) is a sophisticated method for 

performance based evaluation of structural response, also adopted by Federal Emergency 

Manage Assessment (FEMA).  Vamvatsikos et al. [12] conducted a study on IDA with several 

structures including a 20-story moment frame and various ground excitations. The parameter 
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utilized for the IDA curve was the maximum interstory angle and correlation of the demand 

and capacity of the frames was evaluated on several performance levels. This study followed 

the methodology summarized in the aforementioned research and the constant parameter 

utilized for the IDA plots was the peak story drift ratio of the 15-story special moment frame. 

Nonlinear time-history analysis was performed on the frame with a set of 20 ground motions 

and each excitation scaled to specific levels of intensity so that the structure undergo different 

performance levels until collapse. The evaluation of the flexural demand will be based on the 

seismic demand on the column splice in terms of peak axial tensile demand (Ps), peak bending 

moment demand (Ms) and peak combined tensile forces and bending moment at the column 

splice level. The overall response of the special moment frame as peak story drift ratio and 

plastic hinge rotation, was to be evaluated and correlation of the frame response and the 

demand at the column splice at three performance levels will be discussed. Initially, the 

incremental dynamic analysis of the structure was completed and the ground acceleration 

Sa(g) versus the peak story drift of the 15-story special moment frame was plotted to identify 

the performance levels. This study focused on three performance levels as defined in FEMA 

[8] and were expressed in terms of story drift ratio (SDR). First level was immediate occupancy 

(IO) at 2% of SDR, second was the life safety (LS) performance level at 4% of SDR and final 

level included in this study was the collapse prevention (CP) level at 6% of SDR. Illustration of 

the IDA curve for ground motion GM01 is included in this section and the IDA of the 20 ground 

excitations is to be discussed in the following sections.  

Initially, the fundamental period of the structure was defined and used in the response 

spectra (see Figure 2.2.3) to estimate the ground acceleration corresponding to the first 

mode, Sa(T1) which was equal to 0.45g for GM01, a value close to the peak ground 

acceleration (PGA). The response spectrum was based on the original factors, therefore the 
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next step was to run the nonlinear time-history analysis on the frame with the original scale 

factor and define the peak story drift ratio. Hence, the first point of the IDA curve was 

estimated. The next scale factor was calculated using a linear formula considering that the 

response spectrum is elastic in terms of scale factor. For example, the original factor of GM01 

was 1.167 which corresponds to 0.45g, hence the formula to estimate the scale factor 

corresponding to Sa(T1) of 0.50g was:  

SF0.50g = (1.167*0.5)/0.45 = 1.283 

                                             Table 2.4.1. IDA scale factor for GM01 

GM Sa (T1) 
GM Scale 

Factor 

Original GM01 0.45 1.167 

GM01 

0.45 1.167 

0.5 1.283 

0.55 1.412 

0.58 1.491 

0.6 1.540 

0.65 1.668 

  

This procedure was repeated for all the ground motions and analyses for all scale factors were 

performed. Through the analyses the peak story drift ratios were extracted by selecting the 

maximum value of relative displacement of each level. Figure 2.4.1 displays the time history 

of the story drift ratio for all the 15 levels of the moment frame from which the peak SDR was 

defined at approximately 3.8% corresponding to the second story. It can be observed that the 

response pattern of the frame is consistent at all story levels. 
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Figure 2.4.1. Story drift ratio time history for GM01 
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CHAPTER 3. SEISMIC DEMAND ON THE COLUMN SPLICES IN THE 15-STORY 

FRAME UNDER GM01 

3.1 Dynamic properties of the frame: Modes and periods of vibration 

The dynamic properties of the frame have an impact on the seismic response of the 

structure, hence it was important to define these properties by performing modal analysis on 

the 15-story special moment frame as discussed in previous sections. The first twelve 

fundamental modes of the frame were defined from the numerical model and were under 

investigation for Rayleigh damping as mentioned. The fundamental periods of the first, 

second, third and fourth modes were 2.491sec, 0.920sec, 0.549sec and 0.388sec respectively. 

All the mode shapes are illustrated in Figures 3.1.1, 3.1.2, 3.1.3 and 3.1.4.   In the following 

sections, it will be demonstrated that the response of the structure beyond elastic behavior 

is mainly affected by higher modes and the deformed shape is similar to the mode shapes. 

 

            Figure 3.1.1. 1st mode, T1=2.491 sec                    Figure 3.1.2. 2nd mode, T2=0.920 sec  
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               Figure 3.1.3. 3rd mode, T3=0.549 sec                 Figure 3.1.4. 4th mode, T4=0.388 sec 

 

3.2 Identification of the peak tension forces in the column splice, Ps 

The first term to be estimated is the tensile axial force demand of the column splice. 

The notation adopted for this study is following Shen et al [11] notation, therefore the peak 

axial tensile force at the column splice level is noted as Ps and it was normalized by the 

nominal capacity of the smaller column on top of the column splice, Pty. To identify the peak 

value, the time history of the axial force of the column splices locations were extracted, 

normalized and the peak absolute value of each splice was calculated in order to estimate the 

maximum tensile demand of the frame. For illustration, Figure 3.2.1 shows the response of 

the structure in terms of axial force demand of 14th story exterior column splices, it is 

observed that for these two splices the absolute peak Ps/Pty ratio is approximately 0.057. The 

procedure was time consuming considering that the 15-story moment frame includes thirty 

column splices hence, the peak values of Ps were extracted using SAP2000, normalized and 
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locating the peak value. As it is observed, the maximum value is negative which indicates that 

the splice is in compression. Following the procedure described, the peak axial tensile demand 

ratio of the moment frame under GM01 for a story drift ratio of 2% estimated was 0.374. The 

analyses results indicated that all the column splices were under compression for all the cases 

set in the model and the demand over capacity ratio is not affected by the ground motion, on 

the contrary the axial force demand is relatively constant as it will be discussed in the 

following chapters. Additionally, the ground acceleration versus the peak Ps/Pty ratio was 

plotted with the peak exterior and the maximum value for interior column splices at each 

level of the frame as demonstrated in Figure 3.2.2 under GM01 for story drift ratios of 2%, 4% 

and 6%. It can be observed that the frame peak axial demand-to-capacity ratio corresponds 

to the 2nd story exterior column splice. Furthermore, the exterior column ratios are higher 

than the interior column ratios. 

 

Figure 3.2.1. Normalized axial force time history response of 14th floor exterior column splices under 

GM01 at 2% SDR 
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Figure 3.2.2. Splice Locations: Sa(g) vs. Ps/Pty under GM01 

 

3.3 Identification of the peak bending moment in the column splice, Ms 

The second term estimated for the seismic demand evaluation was the peak bending 

moment of the column splice and plastic moment ratio Ms/Mpt. With similar procedure as the 

identification of the axial tensile force, the time history of the moment demand on the splices 

was extracted from SAP2000, normalized and then the absolute value was taken to find the 

maximum value of the ratio. The demand ratio is important to the investigation of the 

demand on the splice location specifically and in combination with the IDA curve and the 

performance levels, the correlation between the overall response of the frame and the splice 

demand can be established. In contrast with the axial force demand, it was observed from 

the analyses results that the bending moment demand varies under each ground excitation 

and as expected is increasing in proportion to the story drift ratio of the structure. The 

bending moment demand over capacity ratio of the 14th story exterior column splices under 

GM01 corresponding to the axial tensile force plotted in the previous section is illustrated in 
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Figure 3.3.1. As it can be observed, the column splice response is almost identical for the two 

exterior locations investigated in the plot. The peak normalized flexural ratio of the two 

exterior column splices at 14th story is approximately equal to 0.510 as it was calculated and 

displayed on the plot. As mentioned, this process was time consuming thus the peak values 

of the moment demand were extracted from SAP2000 and the demand over capacity ratio 

was calculated. In the next chapter, the flexural demand of the frame is summarized for the 

twenty ground motions. Moreover, the ground acceleration was plotted with the peak 

flexural demand/capacity ratio for each column splice level as demonstrated in Figure 3.3.2 

under GM01 for the overall response of the frame at 2%, 4% and 6% of SDR. It is observed 

that the frame peak Ms/Mpt ratio is correlated to the 14th story interior column splice and that 

the interior column ratios are greater than the exterior column ratios. 

 
Figure 3.3.1. Normalized bending moment time history response of 14th floor exterior column splices 

under GM01 at 2% SDR 
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Figure 3.3.2. Splice Locations: Sa(g) vs. Ms/Mpt under GM01 

 

3.4 Identification of the peak combination of bending moment and axial tensile force 
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the column splice locations for specific scale factor of ground excitation. For demonstration, 

the peak Ps/Pty + Ms/ Mpt ratio for exterior column splices at level 14 is approximately 0.54. 

Overall response and comparison is following in the next chapter. 

 

Figure 3.4.1. Combined axial and flexural demand time history of 14th floor exterior column splices 

under GM01 at 2% SDR 
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CHAPTER 4. SEISMIC DEMAND ON THE COLUMN SPLICES IN THE 15-STORY 

FRAME UNDER 20 GROUND MOTIONS 

4.1 Peak response patterns in the moment frame and column splice 

Assessment of the demand was a combination of the seismic behavior of the frame, 

the demand on column splices and the plastic hinge rotation. The column splice demand and 

the plastic hinge rotation at beam ends was evaluated at specific performance levels as 

defined earlier, utilizing the incremental dynamic analysis of the 15-story special moment 

frame. Initially the IDA curves evaluate the seismic response at increasing levels of ground 

motion intensity as shown in Figure 4.1.1. It can be observed that an outlier curve 

corresponding to ground motion GM02 exceeds the ground acceleration range of 0.37g and 

1.2g that represents the set of ground excitations. GM02 curve requires more than 3.0g for 

the frame to experience 6% of SDR in contrast with the minimum value of 0.37g correlated to 

GM04. For discussion, GM02 will be excluded from the IDA plot nevertheless the results of 

demand corresponding to this ground excitation are not excluded. Figure 4.1.2 illustrates the 

IDA curves excluding the ground motion GM02 and it is noted that: 

 While the ground acceleration is increasing, the story drift ratio is linearly increasing until 

approximately 2% of SDR. 

 From Figures 4.1.3 – 4.1.5, it is observed that the response under different ground 

excitations varies.  Some of the curves are smoother than others due to the nature of the 

excitation. 

 The peak SDR in most of the cases was the story drift angle corresponding to higher stories 

for elastic response until 2% of SDR while the second story of the moment frame 

experienced the peak SDR ratio when the structure undergoes inelastic behavior.  
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For better understanding and assessment of the overall response of the structure, the plastic 

hinge maps of the frame at 1%, 2%, 3%, 4% and 6% of SDR with the corresponding bending 

moment diagrams were plotted for GM02. Figures were utilized to evaluate the response of 

the frame under elastic behavior and gradually to plastic hinge formation until the 15-story 

SMF experienced 6% of story drift ratio. Appendix C includes plastic hinge maps and bending 

moment diagrams at several time steps such as at the peak SDR, at the first plastic hinge 

formation in columns and at the end of the excitation. The results correlate to ground motion 

GM02 and the observations from the figures in Appendix C are: 

 The moment diagrams revealed different moment diagram shapes that were categorized 

for the purpose of this study as they are illustrated in Figure 4.1.6. The first category was 

defined as the Perfect Double Curvature (PDC), the elastic BMD utilized in design with 

point of inflection (PI) near mid-height of the column. The second type was specified as 

the Upper Triangle Double Curvature (UTDC) as shown in figure 4.1.6b with point of 

inflection below the mid-height of the column. Next pattern was the Lower Triangle 

Double Curvature (LTDC) where point of inflection for the column is located above mid-

height. Last type of moment diagram shape is the Perfect Single Curvature (PSC) 

describing the frame mechanism when no axial force is observed in the beams and the 

columns of the frame from top to base is responding as a cantilever (see Figure 4.1.6d).  

 Two of the patterns observed in seismic response of the frame implicate column splice 

formation. When UTDC occurs, plastic hinge forms on the top of the column while at the 

case of LTDC plastic hinge formation was observed on the bottom of the column. 

 The displacements of the frame at 1%, 2% and 3% of SDR comply with the first mode 

shapes. For 4% and 6% of story drift, higher modes mainly influence the response of the 

frame.  
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 At 1%, 2% and 3% of SDR when peak story drift occurs, perfect double curvature (PDC) 

was observed on columns.   

 In all cases of SDR, at the end of excitations at 40 seconds, single curvature was observed 

in the moment diagrams. While SDR is increasing, the number of columns experiencing 

single curvature is rising as it is demonstrated, especially in the lower story levels. At 1% 

of SDR, single curvature is observed on 14th story and by the time structure reach 3% of 

SDR, plastic hinge formation occurred on the interior column splice of 14th story and the 

bottom of exterior columns on the same level. Additional plastic hinge forms on the top 

of column on 12th story.  

 At 4% of SDR, plastic hinges formed on the bottom of 1st story columns with the LTDC 

bending moment pattern. Additional plastic hinges formed on the top of the 5th story 

under the UTDC moment diagram shape and on the column splice location on 14th story. 

The column splice plastic hinge was also indicated by the peak Ms/Mpt results at 4% of SDR 

as shown in Figure 4.3.2. At the end of excitation, massive single curvature was observed 

at the lower levels of the frame. 

 When the overall response of the frame was near collapse prevention at 6% of SDR, similar 

behavior was observed with plastic hinge formation under LTDC and UTDC bending 

moment patterns. Furthermore, at the columns of 2nd up to the 5th story, plastic hinge 

formation was initiated on the top of the columns with the joints to develop plastic hinges: 

two in the beams and one on the bottom column of the joint. The inelastic action in three 

joint members was critical with possibility of joint failure if hinge form on the top section. 

This development could be interpreted with the rotational capacity of the beams. When 

the beam was not able to develop additional rotation, the plastic hinge was forced to form 

on the column creating a critical joint. 
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 At the end of excitation at 6% of story drift ratio the massive single curvature moment 

diagram and the plastic hinge map indicate various column splices with possibility of 

plastic hinge formation at any point beyond 6% of SDR.  

 The main observation from the response is the plastic hinge formation on the column 

splices of 14th story. Recall that that the strong column-weak beam ratio determined in 

design process corresponding to 14th story level joint was 1.47, and the frame sections 

satisfy the SCWB requirement. In contrast to the high SCWB ratio, the demand exceeded 

the capacity in splices in addition to the bottom of exterior columns at the same level. 

 Plastic hinge formation occurred on the top columns of lower levels although large SCWB 

ratio was estimated for the selected members.  One could believe that the high design 

ratio would be conservative and inelastic action on columns would be prevented, however 

the findings indicate that even the overdesigned column sections undergo inelastic 

behavior. 
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Figure 4.1.1. Incremental dynamic analysis curve of 20 ground motions 
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Figure 4.1.2. Incremental dynamic analysis curve of ground motions excluding GM02 
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Figure 4.1.3. Incremental dynamic analysis curve of ground motions GM01-08 
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Figure 4.1.4. Incremental dynamic analysis curve of ground motions GM09-16 
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Figure 4.1.5. Incremental dynamic analysis curve of ground motions GM17-20 

 

a) PDC  b) UTDC                     c) LTDC                  d) PSC 

Figure 4.1.6. Bending moment patterns 

 

4.2 Peak tension forces in the column splice, Ps 

The maximum axial tensile force demand ratio determined normalized by the 

axial capacity of the smaller column section is demonstrated in Figures 4.2.1, 4.2.2 and 

4.2.3 at 2%, 4% and 6% of story drift ratio respectively. Figures represent the absolute 

values of the estimated ratios although actual values were of negative sign 



www.manaraa.com

50 
 

representing compressive forces. Axial demand was compressive in all ground 

excitations result. As it can be observed: 

 At 2% of story drift ratio, the average axial demand on the column splices with is 

0.354 and a small variation under each ground excitation is observed with lowest 

ratio of 0.282 and maximum of 0.379 at GM20 and GM18 respectively. 

 When the frame experienced 4% of story drift ratio, the maximum Ps/Pty is 

increased compared to 2% of SDR however not significantly. The average of peak 

axial demand over capacity ratio is 0.390 and the overall demand over the set of 

twenty ground motions is uniform as shown in Figure 4.2.2. 

 The peak Ps/Pty ratio at 6% of SDR is greater than the previous levels with mean of 

0.399. As Figure 4.2.3 displays, the demand varies under each ground excitation in 

contrast with 2% and 4% of SDR, with the lowest ratio to be 0.374 and the highest 

0.423 corresponding to GM20 and GM03 respectively. 

 In general, it is noted that the peak Ps/Pty ratio is uniform through the ground 

excitations with a small increase at each performance level.  

 

Figure 4.2.1. Axial force demand at 2% of SDR under 20 ground motions 

 

0.00

0.10

0.20

0.30

0.40

P
s/

P
ty

 



www.manaraa.com

51 
 

 

Figure 4.2.2. Axial force demand at 4% of SDR under 20 ground motions  

 

Figure 4.2.2. Axial force demand at 6% of SDR under 20 ground motions 
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of 0.907 was estimated. In several cases the Ms/Mpt ratio exceeds 1.0, which 

implicates that plastic hinge formation occurred on column splices. 

 At 6% of SDR, the peak demand is 94.8% of the small column nominal capacity on 

average. Simultaneously, the rising ratio causes increase in the plastic hinge 

formation with 50% of the cases to reach Ms/Mpt ratio equal or greater of 1.0.  

 For all cases with flexural ratio over 1.0, the plastic hinge map was investigated. 

The results showed plastic hinge formation at the column splice of 14th story and 

several plastic hinges forming at the top of columns in the lower levels. Plastic 

hinge maps will be displayed in the following section. 

 
Figure 4.3.1. Flexural demand at 2% of SDR under 20 ground motions 

 
Figure 4.3.2. Flexural demand at 4% of SDR under 20 ground motions 
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Figure 4.3.3. Flexural demand at 6% of SDR under 20 ground motions 
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 When the frame reaches 6% of SDR, the demand approached 98.9% of capacity on 

average. At this performance level for the case of GM10, the demand is equal to 

120% of nominal capacity being the highest combined axial and flexural 

demand/capacity ratio. 

 

Figure 4.4.1. Combined demand at 2% of SDR under 20 ground motions 

 

Figure 4.4.2. Combined demand at 4% of SDR under 20 ground motions 

 

Figure 4.4.3. Combined demand at 6% of SDR under 20 ground motions 
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4.5 Maximum plastic hinge rotations in beams 

Correlation between the plastic hinge rotation at beam ends and story drift 

ratio is expected. At 2% of story drift ratio is observed that the peak plastic hinge 

rotation (PHR) has a mean of 0.015 radians as illustrated in Figure 4.5.1. Subsequently, 

by increasing the SDR to 4%, the plastic hinge rotation at RBS locations is rising to a 

peak PHR of 0.034 radians on average. However, the RBS plastic hinges do not reach 

more than 0.04 rad when structure experience a story drift ratio of 6%, with exception 

ground motions GM09 and GM12. In combination with plastic hinge maps in previous 

sections, it is observed that the RBS hinges do not go beyond 0.04 radians, forcing 

plastic hinge formation on top of columns in lower story levels. Joints where plastic 

hinges were formed on the lower columns, already appear to have plastic hinges in 

three out of four sections. This mechanism can be critical due to possible failure of the 

joint if further demand force plastic hinge on the top section of the joint. This 

mechanism is observed at three consecutive story level joints as shown in figures in 

Appendix C. 

 

Figure 4.5.1. Peak plastic hinge rotation at beam end under 20 ground motions 
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CHAPTER 5. OBSERVATIONS AND CONCLUSIONS 

 

This study investigates the flexural demand in columns in the following 

contexts: the demand on the column splice, the flexural demand distribution (bending 

moment diagram) shape, and the moment distribution at beam-column joints. 

Incremental dynamic analysis (IDA) was carried out for a 15-story special moment 

frame subjected to 20 different ground motions. A newly developed demand-chain 

concept was employed together with IDA in accessing the seismic demand on column 

splices and strong column-weak beam mechanism, based on inelastic deformation 

demand on beam-to-column joints at three performance levels, the immediate 

occupancy (IO) level, the life safety (LS) level and the collapse prevention (CP) level at 

2%, 4% and 6% of story drift ratio (SDR) respectively. The demand on column splice 

was evaluated in terms of peak normalized axial ratio, the peak flexural ratio, and the 

maximum combined axial and flexural demand-to-capacity ratio. This investigation 

concludes, with combined IDA and demand-chain concept, that the flexural demand 

on the splice can reach as high as the nominal strength of the smaller section when 

the structure is subjected to the design earthquake. This study also presents 

systematically single curvature deformation patterns in the columns in contrast to the 

perfect double curvature (PDC) assumption used in code-based design of steel 

moment frames. Furthermore, this work reveals that plastic hinges may occur in the 

columns near beam-to-column joints when the frame was subject to the life safety 

(LS) level of earthquake ground motions. This finding presents a challenge to the 

current methodology used in enforcing strong column-weak beam in earthquake-

resistant moment frames. 
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The overall response of the special moment frame was evaluated in terms of 

story drift ratio implementing incremental analysis and the demand was assessed in 

three performance levels. The IDA curves indicate that the range of ground 

acceleration for the ensemble of ground motions utilized was from 0.4g up to 1.2g 

excluding GM02. The ground acceleration against the story drift ratio is linearly 

increasing until 2% of SDR at which plastic hinges form at the RBS locations in the 

beams.  

Beyond 4% of SDR it is noted that without significant increase in the ground 

acceleration, the frame response approaches the collapse prevention level. The 

decrease of the slope in the curve between 4% and 6% of SDR can be justified by the 

inelastic behavior and plastic hinge formation within the frame. Plastic hinges initiated 

at the design level earthquake did not influenced the ductile response of the frame. 

The peak axial, flexural and combined demand-to-capacity ratios estimated at 

three performance levels are summarized in Figures 5.1, 5.2 and 5.3, illustrating the 

development of the seismic demand on the column splices. As the story drift ratio 

increases, the demand was gradually rising with uniform tensile axial force ratio Ps/Pty 

at all performance levels. The increase in axial ratio was not as significant as the 

flexural demand. The normalized axial ratio initiated at 35.4% for minor structural 

damage and reached 39.9% near collapse. 

The mean of flexural ratio (Ms/Mpt) was significantly increased from 75.7% up 

to 94.8% when structure experienced minor damage to near collapse respectively. In 

50% of the ground excitations, the demand exceeded the nominal flexural strength of 

the small column. The combined axial and flexural demand/capacity ratio is mainly 
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influenced by the flexural ratio and follows the same pattern over the set of 20 ground 

excitations.   

Moreover, the plastic hinge maps and the bending moment diagrams at 

various time steps and performance levels revealed four patterns on the seismic 

response of the 15-story special moment frame, two of which indicate plastic hinge 

formation on columns. Plastic hinges on column splices were observed beyond 4% of 

story drift ratio under all 20 ground motions regardless the type of the excitation. 

Additionally, at the end of excitations, single curvature was observed in several stories 

in all 20 ground motions. 

Plastic hinges were observed at top of columns of lower story levels with the 

joint forming three plastic hinges out of four intersected sections. Although the strong 

column-weak beam mechanism was ensured through design with ratios greater than 

1.20, the inelastic action on the column was not prevented. On the contrary, critical 

joint mechanism was observed.  

Implementation of incremental dynamic analysis in this study revealed 

significant information on the flexural demand on columns. The outcomes indicate 

plastic hinge initiation on the column splices and gradual increase in the demand 

through various performance levels. However, further investigation with heavy 

section members will provide in depth understanding of the flexural demand. Finally, 

the strong column-weak beam (SCWB) requirement should also be incorporated in 

future research to assess the conservatism of current standard specifications. 
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Figure 5.1. Column splice demand at 2% of SDR 

 

Figure 5.2. Column splice demand at 4% of SDR 

 

Figure 5.3. Column splice demand at 6% of SDR 

Table 5.1. Average normalized demand 
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APPENDIX A: IMPACT OF DAMPING COEFFICIENTS REPORT 
 

Cases:  

 

 

 

 

 

 

 

 

 

 

 

In analyses, the P-Delta effect was not included for all the above cases. 

A. Damping ratio 5%  

 

A1. 5% Linear Analysis 

 

The Peak SDR is on the 1st level above the seismic base of the moment frame. 

 

 T1-T2 T1-T3 T2-T4 T4-T10 

Peak SDR (%) 4.421 4.558 4.059 2.852 
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A2. 5% Non-linear Analysis 

 

The Peak SDR is on the 2nd level above the seismic base of the moment frame. 

 
 

 T1-T2 T1-T3 T2-T4 T4-T10 

Peak SDR (%) 4.611 4.734 4.316 3.635 

 

 

B. Damping ratio 2%  

 

B1. 2% Linear Analysis 

 

The Peak SDR is on the 1st level above the seismic base of the moment frame. 

 

 T1-T2 T1-T3 T2-T4 T4-T10 

Peak SDR (%) 5.000 5.314 5.094 4.365 
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B2. 2% Non-linear Analysis 

 

The Peak SDR is on the 2nd level above the seismic base of the moment frame. 

 

 T1-T2 T1-T3 T2-T4 T4-T10 

Peak SDR (%) 5.271 5.323 5.066 4.439 

 

 

 

Notes: 

 In Linear analyses the Peak SDR is at the 1st level while in Non-linear analyses the peak 

SDR is at the 2nd level of the moment frame. 

 The combination of T1-T3 gives the largest value of Peak SDR in Linear and Non-linear 

cases while combination of T4-T10 always gives the smallest value compared to the other 

combinations. 

 As it was expected, the story drift ratio of the case of damping ratio of 2% is larger 

compared to damping ratio of 5%.  

 Additionally, in both damping ratio cases, the SDR of Non-linear analysis is greater than 

the linear analysis value. 
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APPENDIX B: M-THETA COMPARISON UTILIZING GM02 – NORTHRIDGE 1994 
 

Case 1: 

 

Case 2: 

 

Case 3: 
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Case 4:  

 

 

 

Case 5:  

 

 

Analysis results indicate that Case 1 although it is the curve based on test data, it is not feasible 

to use for assessment on the plastic hinge rotation. SAP2000 was not able to handle the 

negative stiffness after the plastic hinge reached 0.04 radians. 

Similarly, Case 5 results showed that it is not appropriate to use as it is expected that the 

plastic hinge will go beyond 0.04 rad when SDR is greater than 4% and negative stiffness is 

leading to numerical problems. 

 

 

1.21 Mp 
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Case 2a(4%):  

Peak SDR = 3.986%     [2nd Story] 

Peak PHR = 0.0358      [1st Story] 

Moment at peak PHR: M = 3037.6 k-ft      &         Mp = 2544.89 k-ft        1.19Mp 

 

Figure B.1. Plastic hinge map at the end of excitation at 40 sec 
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Case 2b(6%):  

Peak SDR = 5.997%       [2nd Story] (the difference in SDR while the PHR is practically 

unchanged is due to the formation of plastic hinges in the columns. The fact that the beam 

strength is ever increasing, forges the plastic hinge formation in columns) 

Peak PHR = 0.0362        [1st Story level] 

Moment at peak PHR: M = 3043.6 k-ft      &         Mp = 2544.89 k-ft        1.2Mp 

 

Figure B.2. Plastic hinge map at the end of excitation at 40 sec 
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Case 3a(4%):  

Peak SDR = 4.029%   [2nd Story] 

Peak PHR = 0.0327   [1st Story] 

Moment at peak PHR: M = 3038.4 k-ft      &         Mp = 2544.89 k-ft        1.19Mp 

 

Figure B.3. Plastic hinge map at the end of excitation at 40 sec 
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Case 3b(6%):  

Peak SDR = 6.078%   [2nd Story] 

Peak PHR = 0.0331    [1st Story] 

Moment at peak PHR: M = 3044.6 k-ft      &         Mp = 2544.89 k-ft        1.2Mp 

 

Figure B.4. Plastic hinge map at the end of excitation at 40 sec 
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Case 4a(4%):  

Peak SDR = 4.00%   [2nd Story] 

Peak PHR = 0.0334    [1st Story] 

Moment at peak PHR: M = 3038.3 k-ft      &         Mp = 2544.89 k-ft        1.19Mp 

 

Figure B.5. Plastic hinge map at the end of excitation at 40 sec 
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Case 4b(6%):  

Peak SDR = 6.02%   [2nd Story] 

Peak PHR = 0.0335    [1st Story] 

Moment at peak PHR: M = 3044.3 k-ft      &         Mp = 2544.89 k-ft        1.2Mp 

 

Figure B.6. Plastic hinge map at the end of excitation at 40 sec 
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Case 4a:  

Peak SDR = 4.00%   [2nd Story]      &       Peak PHR = 0.0334    [1st Story] 

 

Figure B.7. 1st set of plastic hinge formation at 6.415 sec 
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Figure B.8. At the end of excitation at 40 sec 
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Case 4b:  

Peak SDR = 6.02%   [2nd Story]         &         Peak PHR = 0.0335    [1st Story]  

   

Figure B.9. 1st set of plastic hinge formation at 6 sec 
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Figure B.10. At the end of excitation at 40 sec 
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APPENDIX C: BENDING MOMENT DIAGRAMS FOR GM02 – NORTHRIDGE 1994 
 

M-theta curve: 

 

Ground motion time history: 
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SDR 1% 

Peak SDR -> 14th story 

    

Figure C.1. Peak SDR at 7.265 sec 
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Figure C.2. At the end of excitation at 40 sec 
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SDR 2% 

Peak SDR -> 4th story 

 

Figure C.3. Peak SDR at 6.435 sec 
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Figure C.4. At the end of excitation at 40 sec 
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SDR 3% 

Peak SDR -> 3rd story 

 

Figure C.5. 1st set of plastic hinges on 1st story columns at 5.12 sec 
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Figure C.6. Peak SDR at 6.405 sec 
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Figure C.7. 2nd set of plastic hinges on 14th story columns at 7.64 sec 
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Figure C.8. At the end of excitation at 40 sec 
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SDR 4% 

Peak SDR -> 2nd story 

 

Figure C.9. 2nd set of plastic hinge formation on 5th story columns at 6.415 sec 
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Figure C.10. Peak SDR at 12.675 sec 
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Figure C.11. At the end of excitation at 40 sec 
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SDR 6% 

Peak SDR -> 2nd story 

 

Figure C.12. 2nd set of plastic hinge formation on 2nd story columns at 6 sec 
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Figure C.13. Peak SDR at 12.73 sec 

 

8
9

 

 



www.manaraa.com

90 
 

 

 

Figure C.14. At the end of excitation at 40 sec 
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